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Introduction

The purpose of commodity cluster computing is to utilize large numbers of readily
available computing components for parallel computing to obtaining the greatest amount
of useful computations for the least cost.  The issue of the cost of a computational
resource is key to computational science and data processing at GSFC as it is at most
other places, the difference being that the need at GSFC far exceeds any expectation of
meeting that need.  Therefore, Goddard scientists need as much computing resources that
are available for the provided funds.  This is exemplified in the following brief history of
low-cost high-performance computing at GSFC.

The GSFC group was formed in the mid-1970’s in response to the need for large amounts
of computation for processing LANDSAT images. It was recognized that mainframes and
mini-computers could not provide sufficient processing power for processing this data.
Even at that time funds were limited at NASA to build such a processing resource.

Initially it was decided to look into using optics to process the LANDSAT data. The idea
was to process whole images at a time rather than one image pixel at a time.  It soon
became apparent that optical computing might not be ready soon enough for LANDSAT,
yet, due to the advances in VLSI technology, electronics might be.

A shift in effort from optics to electronics resulted in procurement of the
NASA/Goodyear Massively Parallel Processor (MPP). It was a 16,384 ALU SIMD
(single-instructions stream/multiple-data stream) computer that could process a 128x128
section of a LANDSAT scene at a time, not a whole image, but a good-sized portion of
one.  The development cost of the MPP was only $7 million.  It arrived at GSFC in 1983
and became an invaluable resource to study both computer architecture as well as NASA
science applications running on a parallel architecture.  Throughout the 1980’s several
similar architectures became commercially available: GAP, ASAP, ICL DAP, and
Thinking Machine’s Connection Machine to name a few.  In 1990, GSFC obtained a
MasPar MP-1, which was four times as fast as the MPP and cost $1 million. In 1992
GSFC obtained a MasPar MP-2, which was as fast as a Cray YMP on a PPM (piecewise
parabolic method) fluid dynamics code.  In 1993 in cooperation with MasPar Inc. GSFC
clustered 4 MP-2’s (cost ~$6 million), which perform faster than a 16-processor C90 on
the above-mentioned PPM code.



During this period of time, the MP-2 was exhibiting uptimes of months if not a year or
more, while users of MIMD (multiple -instructions stream/multiple-data stream)
machines had to be satisfied with uptimes of a day or even hours.  LINUX had just shown
up on the scene and had the potential of being quite reliable due to the large number of
developers and users. Later it became apparent that large numbers of developers could
also be a disadvantage as well as an advantage.

In 1994, a team was put together at GSFC to build a cluster consisting only of commodity
hardware (PC’s) running LINUX, which resulted in the first Beowulf cluster (later
renamed

(Wiglaf).  It consisted of 16 100Mhz 486DX4-based PC’s.  The PC’s were connected
with 2 hub-based Ethernet networks tied together with channel bonding software so that
the 2 networks acted like one network running at twice the speed.  This demonstration
cluster showed that one could utilize commodity hardware to build a very cost effective,
moderately fast computing platform.  The next year a 16 PC cluster, Beowulf II,
Hrothgar, based on 100Mhz Pentiums was built and was about 3 times faster, but also
demonstrated a reliability comparable to the previously mentioned MasPar MP-2.  At one
point it had not crashed in 9 months before someone accidentally shut off its power.  At
that time impressive performance had not yet been demonstrated.  The next year  (1996) a
Pentium-Pro cluster at Caltech demonstrated a sustained giga-flop on an application. This
was the first time a commodity cluster had shown high performance potential.

Up until 1997, the commodity clusters at GSFC were in essence engineering prototypes,
that is, they were built by those who were going to use them.  In spring of 1997 a project
was started to build a commodity cluster that was intended to be used by those who had
not built it, the HIVE (highly parallel virtual environment) project.  The idea was to have
workstations distributed among many offices and a large number of compute nodes (the
compute core) concentrated in one area.  The workstations would share the compute core
as though it was apart of each.  Though the original HIVE only had one workstation,
many users were able to access it from their own workstations over the Internet. Many

Cluster #proc #node type CPUGhz Net
Ghz

RAM
(GB)

Disk
(GB)

Year Cost $

theHIVE 128 64 P Pro 0.2 0.10 28 896 1997 250K

pivot-g 32 16 P3 0.5 1.28 8 140 1999 100K
pivot-d 40 10 P3 0.5 1.28 5 90 1999 100K
topaz 32 16 P3 0.7 1.28 16 200 2000 270K
bbblue 32 16 P3 0.65 1.28 16 300 2000 270K
orka 32 16 P3 0.7 1.28 16 100 2000 160K
medusa 128 64 Athlon 1.2 2.00 64 2560 2002 220K

TABLE 1
 CT application proto-typing clusters.



non-builders were able to develop parallel scientific applications on the HIVE and one
scientist, Dr. Michael Gross, produced the first published scientific results facilitated by
the HIVE.  The HIVE was also the first commodity cluster to exceed a sustained 10
Gflop on an algorithm.  Since 1997 GSFC has had clusters built from components from
DELL, Gateway, SGI, IBM, and VALinux, which have become the mainstay of scientific
parallel program prototyping for commodity clusters here at GSFC.

Recently the cluster, medusa, was built from 64 dual 1.2 Ghz AMD Athlons connected
with 2 Ghz Myrinet. This cluster finally embodied the intended concept of the HIVE.
Along with the 128-processor compute core, medusa has more than a dozen workstations
throughout a building at GSFC attached to the core with 2 Ghz optical fibre Myrinet.
Several clusters are being planned and built throughout GSFC to support missions and
scientific research.  Table 1 lists the CT application prototyping clusters.

Applications

Many applications and algorithms have been developed on CT clusters.  The following
are just a few of these applications.

Hierarchical Image Segmentation (HSEG) in Remotely Sensed Multi-spectral or
Hyperspectral Imagery

Dr. James C. Tilton
Code 935/Applied Information Sciences Branch
NASA/Goddard Space Flight Center
Email:  James.C.Tilton.1@gsfc.nasa.gov

The process of image segmentation is highly useful in the field of Earth remote sensing.
Computing speeds can be enhanced when an image is partitioned into sections or regions
among the nodes of a Beowulf Cluster.  The regions may consist of groupings of multi-
spectral or hyper-spectral image pixels with similar data feature values.  These related
regions are then tagged with informational labels to extract information regarding the
ground cover or land use.

In his previous work with the old HIVE Cluster, Dr. Tilton programmed a version of his
HSEG algorithm using C and PVM for parallelization. He did encounter some processing
window artifact problems that occur when processing large images.

In the new version of HSEG running on the new HIVE2 Cluster, he is able to overcome
this problem.  He plans to use the new C++/MPI version of HSEG in his NRA-funded
research project: "Knowledge Discovery and Data Mining Based on Hierarchical
Segmentation of Image Data". He will be reporting the preliminary results from this
project in a paper he  presented at the International Geoscience and Remote Sensing
Symposium 2002, Toronto, CA, June 24-28, 2002.  The paper, co-authored with G.



Marchisio, K. Koperski and M. Datcu, is titled "Image Information Mining Utilizing
Hierarchical Segmentation."

URL: http://www.nasamedicalimaging.com/hseg
http://code935.gsfc.nasa.gov/code935/tilton

Parallel Matlab on Beowulf Machines

Dr. J. Anthony Gualtieri
Code 935/Global Science and Technology
NASA/Goddard Space Flight Center

Interactive programming environments with powerful graphical and image display
capabilities, such as Matlab, are available on single processor workstations.  To extend
the capability of this tool to tackle more advanced problems, we must learn to integrate
these environments in a Beowulf cluster.

• A software system called Matlab*P (written by Parry Husbands and Charles
Isbel) combines these two approaches to the scientific computing and offers a
resolution of the implementation challenge.   Currently, Matlab*P is installed on
several clusters at GSFC for the development of remote sensing classification
codes.

• The user avails herself of Matlab syntax with polymorphism to write, for
example, a two-dimensional square random array as a = rand (4000*p); where the
*p is parsed to indicate that a parallel variable that will distribute itself across
multiple cluster processors.  Then operator overloading transparently allows the
use to invert this matrix by writing ainv = inv (a).  A client node of the cluster
runs a single copy of standard Matlab which has been extended with Matlab
functions that are coupled to dynamically loaded packages that link Matlab on the
client to the server running on the compute nodes of the cluster.   The server
nodes are running SCALAPACK on top of MPI to provide the actual
computation. To the user the full interactive capability of Matlab is always
available, including all the single processor capability of ordinary Matlab, but
now all the standard linear algebra functions from SCALAPACK are available to
perform the computations.  The user never has to deal with any message passing
additions to the standard Matlab code.

References

Proceedings of the Third International Conference on Vector and Parallel Processing,
“The Parallel Problems Server: A Client-Server Model for Large Scale Scientific
Computation (1998)”, Husband and Isbel

Advances in Neural Information Processing Systems 12, “The Parallel Problem Server:
An Interactive Tool for Large Scale Machine Learning (1999),” Husband and Isbel



Hyper-spectral Imagery Dimension Reduction Using Principal Component Analysis on
the HIVE

Sinthop Kaewpijit
School of Computational Sciences
George Mason University
Sinthop@science.gmu.edu

Tarek El-Ghazawi
Department of Electrical and Computer Engineering
George Washington University
tarek@seas.gwu.edu

Jacqueline Le Moigne
Applied Information Science Branch
Code 935,  NASA/ Goddard Space Flight Center
Lemoigne@backserv.gsfc.nasa.gov

Hyper-spectral data, with observations collected at hundreds of bands, are produced by
some of the operational NASA instruments.  These remote sensing technology
developments will facilitate many new applications of Earth and Space Science.  On the
other hand, the increased data volumes prompt the need for much faster processing and
methods for data reduction. Dimension Reduction is a spectral transformation, aimed at
concentrating the vital information and discarding redundant data. One such
transformation, used widely in remote sensing, is Principal Component  Analysis (PCA).
Parallel algorithms have been developed for PCA, along with implementations and
performance measurements on the HIVE Cluster.  An innovative technique via wavelet
decomposition is introduced as a new choice for reducing dimensionality of hyper-
spectral data.

Reference:

Science Data Processing Workshop 2002
URL:   http://that.gsfc.nasa.gov/gss/workshop2002

Parallel Adaptive Mesh Refinement  (PARAMESH)

Dr. Peter MacNeice 
Code 935, HPCC
NASA/ Goddard Space Flight Center
E-Mail: macneice@alfven.gsfc.nasa.gov

Dr. Kevin Olson
University of Chicago



NASA/Goddard Space Flight Center
Email: olson@bohr.gsfc.nasa.gov

Paramesh is a software package used primarily for the automatic parallel adaptive mesh
refinement (AMR).  It consists of Fortran 90 subroutines with MPI calls designed to
extend an existing serial code, which uses a logically Cartesian-structured mesh into a
parallel version with block-structured adaptive mesh refinement.  The package builds a
hierarchy of sub-grids to cover the computational domain, with varying spatial resolution
to satisfy the demands of the application. These sub-grid blocks form the nodes of a tree
data-structure (quad-tree in 2D or oct-tree in 3D); each grid block has a logically
Cartesian mesh.

Paramesh maintains the mesh data structure, distributes them to processors for load
balancing, and handles all communications. The users can then construct their code to
call a subset of the high-level Paramesh subroutines. The package supports 1, 2, and 3D
models.

URL:  http://sdcd.gsfc.nasa.gov/RIB/repositories/inhouse_gsfc/Users_manual/amr.html

Applications developed with Paramesh:

1) FLASH, A Parallel, Adaptive Code for Astrophysics

Kevin Olson, Bruce Fryxell, Frank Timmes, Paul Ricker, Mike Zingale, Jonathan
Dursi, Alan Calder, Henry Tufo, Robert Rosner, and Peter MacNeice

FLASH is a general-purpose Astrophysics code that uses PARAMESH.  It currently
includes modules for compressible fluid dynamics using PPM (Prometheus, Fryxell and
Muller), gamma law equation of state, stellar equation of state, reactive flow with a
multi-species nuclear burning network, nuclear energy generation, constant gravitational
field and other forcing terms and AMR and parallelism using Paramesh.

The current scientific work being done with FLASH includes XRAY bursts in 2-3D
(img013.gif), novae and supernovae studies, detonation front instabilities (img014.gif),
crushed turbulence, and burning front-vortex interaction. Future plans for the FLASH
code include development of modules for self-gravity using the multi-grid algorithm,
implicit thermal diffusion, radiation, different fluid solvers (e.g., incompressible), MHD,
AMR using other packages (e.g., SAMRAI) and time adaptivity.

URL:http://www.csar.uiuc.edu/~hoefling/workshop-
may00/Slides/KevinOlson/chicago/sld001.htm



2) AMRMHD3D:  A 3-D Flux-Corrected Transport Code with Adaptive Mesh
Refinement for Ideal, Compressible Magnetohydrodynamics

AMRMHD3D is a new, three-dimensional, magnetohydrodynamics model developed on
the Cray T3E computer system. It extends the FCTMHD3D model for fixed grids to
adaptively refined grids constructed by the parallel meshing package PARAMESH. The
equations are solved conservatively in a finite-volume representation with explicit two-
step Runge-Kutta to advance the variables. The multiple subroutine package of
AMRMHD3D is written in Fortran 90 and consists of 79 Fortran source files and 27
header files in two groups: the FCTMHD3D application group (22 sources, 19 headers)
and the PARAMESH AMR group (57 sources, 8 headers).

URL:
http://www.lcp.nrl.navy.mil/hpcc-ess/amrmhd3d.10.html
AMRMHD3D source code:
ftp://lcp.nrl.navy.mil:/pub/hpcc-ess/amrmhd3d.t3e.tar.Z.

3) ATHENA:  A 3-D MHD Code with Adaptive Mesh Refinement for Modeling Global
Magnetosphere and Accreting Magnetized Stars

Dr. Daniel Spicer
Code 930, Senior Scientist
NASA/ Goddard Space Flight Center

ATHENA is a new, three-dimensional 3D magnetohydrodynamics (MHD) code that uses
dynamic adaptive mesh refinement. The equations are used in a finite volume
representation using Colella's High Order Godunov Corner Transport Upwind scheme,
together with a staggered mesh scheme to insure the magnetic fields remain divergence
free. The AMR package used is the PARAMESH package developed by Peter MacNeice
and Kevin Olson. Presently it is used to model the global magnetosphere and accreting
magnetized stars.

4) ATHENA/AMR

Michael L. Rilee
Maharaj K. Bhat
High Performance Computing
NASA Goddard Space Flight Center
mbhat@hannibal.gsfc.nasa.gov
mrilee@hannibal.gsfc.nasa.gov

In this work, the interaction of solar flux with earth's magnetic field is studied, employing
Athena/Paramesh codes.  While Athena provides the numerical algorithms, Paramesh



software divides the computational domain into large numbers of blocks, distributes these
blocks onto processors and facilitates runtime refinement/derefinement.  Run time flow
visualization reveals evolving physics and monitors progress of simulation.
Athena/Paramesh computational environment is ideal for distributed computing that is
provided by a cluster like HIVE II.

5) Numerical Relativistic Astrophysics Group

Dr. Joan Centrella
Relativistic Astrophysics Group
Code 661, LHEA
NASA/Goddard Space Flight Center
jcentrel@milkyway.gsfc.nasa.gov

A core objective of the numerical relativistic astrophysics group is to develop and apply
codes for solving Einstein's gravitational field equations using finite difference
simulations with adaptive mesh refinement (AMR).  These tools will be used to model
astrophysical sources of gravitational waves as required for the analysis of data produced
by the planned Laser Interferometer Space Antenna (LISA).

The group is also involved in the Lazarus project, an effort producing approximate
models for gravitational waves binary black hole systems using a combined approach
involving numerical simulation together with perturbation theory techniques in the
regimes where they are applicable.

Space Interferometry Mission on Dynamics of Galaxies (SIMDOG)

Dr. Edward Shaya
Institute of Science and Technology at Raytheon
Code 630.1, NASA/Goddard Space Flight Center
Email:  shaya@mail630.gsfc.nasa.gov

As part of the SIM Key Project on Dynamics of Galaxies (SIMDOG), we will be
calculating the trajectories of nearby galaxies given the present positions and velocities.
This is somewhat like running an N-body gravitational code, however, because we are
also constrained by the fact the peculiar motions were zero at t=0, it is more similar to a
boundary valued differential equation problem.  The actual method is called numerical
action, and it relies on classical mechanics. In action theorems, one solves for paths for
which the integrals of the actions over all time are extreme.  This typically requires
solving for the minima of about 300 parameters per galaxy, and we usually calculate
paths for several thousand galaxies. Since the potential field changes as the paths are
varied, it is a very challenging numerical problem. We typically run grids of nodes with
each node solving for orbits in universes of different cosmological parameters.  The
problem thus parallelizes very efficiently and easily.



URL: http://sim.jpl.nasa.gov/ao_support/ao_abstracts.html

 Using a Beowulf Cluster in Land Information System (LIS)

Dr. Paul Houser
Dr. Christa Peters-Lidard
Hydrological Department
NASA Goddard Space Flight Center
Paul.R.Houser.1@gsfc.nasa.gov
Christa.D.Peters-Lidard.1@gsfc.nasa.gov

The Land Information System (LIS) will be a hardware transparent integrated software
and database system, focused on a high-resolution (1km) global land data assimilation
with several independent community land surface models, land surface data assimilation
technologies, and integrated database operations for data management.  The eventual
throughput and storage requirements of the LIS (approximately 1TB per day simulated)
exceed any available or planned NASA computing platform, and hence a custom 194-
node Beowulf cluster is being constructed to support the work.  The relatively weak
horizontal physical coupling of global land surface processes works well with a large-
scale distributed memory parallel processing software design.

The custom Linux Beowulf cluster at NASA/GSFC will consist of one "queen" or control
node and at least 192 "compute" nodes connected by at least fast Ethernet.  The queen
node will control the data staging and model execution, and the compute node segments
will be partitioned into input data preprocessing/interpolation, model execution, and
output data post-processing and gathering.  The queen node will consist of dual 1.5Ghz
processors, 4 GB RAM, and 2 TB storage or better while the compute nodes will consist
of single 1.2Ghz processors, 512 MB RAM, and 80 GB storage or better.  We anticipate
gigabit connections between the compute node switches and the queen nodes as well as
between the queen nodes and the GSFC network.

URL: http://lis.gsfc.nasa.gov/

Scientific Visualization Studio

Randall Jones
Scientific Visualization Studio
NASA/Goddard Space Flight Center

The SVS (Scientific Visualization Studio) utilizes various scientific visualization tools to
provide products and services to scientific communities.  We have a wealth of experience
working with high-performance, professional graphics computers, which utilize
advanced, hardware-based graphics rendering.  The SVS seems to be an ideal place to
introduce a new generation of interactive hardware graphics tools.



In the last few years, commodity, PC-based graphics accelerators have made great
advances in performance while maintaining their commodity pricing.  It has been shown
and proven that a significant increase in graphics performance can be achieved by
breaking the rendering work into smaller components and distributing these to many PC
computers (nodes), each running a hardware graphics accelerator.  The graphics
accelerators on the individual nodes compute a portion of the scene, which is then
assembled to produce an output image.  There are two common models of parallel
hardware rendering we intend to explore.  The first method utilizes multiple displays,
each attached to its own graphics accelerator and outputting a portion or "tile" of the total
display image.  The final result is high (higher than a single display) resolution image
composed of tiled displays.  Second is a parallel rendering approach where a portion of
the scene to be rendered is sent to each node, computed using the graphics accelerator
and then read back into a "master" node to be displayed in a single graphics window.
This parallel rendering approach has the advantage of graphics performance increases
while maintaining the familiar use and interaction of a local window.

A small cluster was specified to provide an adequate test bed for learning and
experimenting with current technologies in the area of hardware-assisted, cluster-based
parallel rendering.  There are a few software packages that one can start with.  A package
called WireGL is a parallel OpenGL library and framework for running existing OpenGL
graphics applications in parallel without modification to the application.  There is also a
follow-on project to WireGL, based on the WireGL code base called Chromium provides
a more general and more customizable framework. OpenGL-based image viewer can be
used to view high-resolution imagery continuously on a large tiled display.

References

S. Molnar et al., "A Sorting Classification of Parallel Rendering," IEEE Computer
Graphics and Applications, vol. 14, no. 4, July 1994, pp. 23-32.

H. Igehy, G. Stoll, P. Hanrahan, "The Design of a Parallel Graphics Interface," ACM
Computer Graphics Proceedings, 1998, pp. 141-150.

G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, P. Hanrahan, "WireGL: A
Scalable Graphics System for Clusters," ACM Computer Graphics Proceedings, 2001,
pp. 129-140.

G. Humphreys, R. Frank, S. Ahern, "Specification for Stanford/DOE Cluster-Rendering
Infrastructure," WireGL/Chromium Project documentation.

G. Humphreys, P. Hanrahan, "A distributed graphics system for large tiled displays,"
IEEE Visualization Proceedings, 1999, pp. 215-227.

B Wylie, C. Pavlakos, V. Lewis, K. Moreland, "Scalable Rendering on PC Clusters,"
IEEE Computer Graphics and Applications, vol. 21, no. 4, July/August 2001, pp. 62-70.



Benchmarks

We evaluated the performance of the communication network of the PC cluster and also
its performance on the class A NAS parallel benchmarks. The communication
performance of the network was measured using the MPI communication libraries for the
Ethernet and the Myrinet. These include the latency, the bandwidth, and the MPI group
communication functions such as reduce, broadcast, and barrier.

The round-trip time between two nodes was measured using the MPI_Send and
MPI_Recv functions for various message lengths. For small messages, the fixed overhead
and latency dominate the roundtrip time. For large messages, the roundtrip time increases
linearly with message size. Half the roundtrip time for short messages is a measure of the
latency of the system. For MPICH under Ethernet, the latency was about 0.1 ms. For
Myrinet, it was about 0.01 ms. The bandwidth between two nodes is obtained by dividing
the message length by half the roundtrip time. For the Ethernet and the Myrinet the
bandwidths were 94 Mbits/sec and 1,266 MBits/sec respectively. Therefore, the
bandwidth under Myrinet is about 10 times the bandwidth under Ethernet. It was noticed
that the MPI group communication functions also showed the same performance ratio for
various message sizes under the two networks.

The NAS parallel benchmark consists of six parallel kernels and three simulated
application benchmarks.  These are:

Elegantly Parallel EP
Fast Fourier Transform FT
LU Decomposition LU
Multi-grid MG
Conjugate Gradient CG
Integer Sort IS

Here, we consider the performance of the six classes A kernel benchmarks. The programs
were compiled using the g77 compiler and linked with the MPICH libraries for the
Ethernet and Myrinet. Table 2 lists the execution times for the 64-processor case. We
notice that on 64 processors, the PC cluster under Myrinet performs better than the
CRAY T3e 900 on all the computational kernels of the NAS benchmarks.

PC(ether) PC(myri) T3e

EP 2.78 2.82 3.2
FT 1.1 5.59 2.9
LU 11.42 20.89 27.6
MG 0.42 0.97 0.8
CG 0.75 2.93 1.3
IS 0.31 -- 1.1



TABLE 2.  NAS class A benchmark times in seconds.

References:

William Gropp, Ewing Lusk, Nathan Doss and Anthony Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Standard", available at:
http://www.mcs.anl.gov/mpi/mpich/

"NAS Parallel Benchmarks" available on the WWW at:
http://www.nas.nasa.gov/NAS/NPB/

"NAS Parallel Benchmarks 2 Detailed Results" available on the WWW at:
http://www.nas.nasa.gov/Software/NPB/NPB2Results/

Conclusion

By necessity, the overwhelming computational needs of earth and space scientists have
driven GSFC to be one of the leaders in the application of low cost high-performance
computing.


